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The stability of an interface between inviscid fluids subjected to a high-frequency 
magnetic field has been examined previously by Garnier & Moreau (1983). The present 
paper extends that study to include the viscosity of both fluids in order to estimate the 
damping rates of the perturbations. Furthermore, Garnier & Moreau made an 
assumption that the frequency of oscillation of the interface could be neglected 
compared to the frequency of the applied field; they concluded that the applied field 
was not destabilizing. That (apparently reasonable) assumption has been lifted in the 
present work and the consequence is that the magnetic field is seen to lead to instabiIity 
over a significant range of wavelengths. Application of this analysis to the 
electromagnetic casting of aluminium is discussed. 

1. Introduction 
Electromagnetic casting of aluminium is a continuous operation without the mould 

which is used in the conventional method of casting. An alternating current passing 
through an inductor around the liquid metal produces a magnetic field in it. 
Consequently the current induced in the metal, together with this magnetic field, 
generate a force to support the metal from the sides. The weight of the melt is 
supported on the metal that has already solidified. 

Sometimes, after electromagnetic casting of aluminium, horizontal striations are 
observed on the surface of the cast ingot. These striations may be caused by the wave- 
like motion of the free liquid surface that travels to the point of solidification on the 
surface during the casting operation. The oscillatory motion at the liquid free surface 
is a result of the perturbations (disturbances) that may be generated by an external 
source such as vibrations in the bottom block supporting the ingot. It is further noted 
that the striations on the surface of the cast ingot are not reproducible, which in turn 
supports the possibility that the perturbation of the liquid surface causes the striations 
because these perturbations are also random in nature. 

The striations present on the surface have a deleterious effect during the subsequent 
steps in production of metal sheets from the ingot. For example, in the rolling 
operation to manufacture thin metal sheets, the striations produce defects that cause 
failure in the materials. Hence it may become necessary to either discard the ingot or 
first machine a few centimetres of metal off the ingot to generate a flat surface. With 
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this practical consequence in mind, here we examine the possibility of oscillations on 
the surface that may produce striations. Stated alternatively, it will not be possible to 
attribute these striations to a random perturbation if it is damped faster than the time 
taken for a disturbance to travel to the solidification point on the surface. 

In the context of stability analysis of fluids, several hydrodynamic instabilities arise, 
notably Rayleigh-Taylor and Kelvin-Helmholtz instabilities. In both of these cases, a 
small perturbation of a fluid interface causes it to deform further. Chandrasekhar 
(1981) has shown that in the presence of a steady (time-independent) magnetic field, the 
hydrodynamic systems above generally become more stable. 

Many more linear stability analyses, based on normal mode expansions of the 
perturbed quantities, have been applied to systems in aluminium processing. The ones 
with a steady magnetic field are encountered in aluminium reduction cells (Sneyd 1992; 
Rivat, Etay & Garnier 1991; Zimin & Kolpakov 1990). Sneyd (1992) showed that the 
magnetic field is mostly stabilizing, except at large wavelengths in a system where the 
interface is crossed by an intense current. Rivat et al. (1991) have determined that a 
vertical magnetic field always has a stabilizing effect on the gravity waves in an 
electrically conducting medium present in an aluminium reduction cell. 

Another application of stability analysis is in horizontal electromagnetic (EM) 
casting, where both the steady magnetic field and current may be used to support the 
weight of the liquid metal. Takeuchi, Etay & Garnier (1989) have conducted such an 
analysis on the free surfaces encountered in horizontal casting of steep strips and rods. 

The issue of stability in the levitation of a thin metal sheet by a high-frequency (kHz) 
magnetic field was studied both experimentally and analytically by Hull, Wiencek & 
Rote (1989). There the instability is primarily of Rayleigh-Taylor type in the presence 
of EM fields. A review of various stability analyses in EM processing area has been 
done by Fautrelle (1991). His coworkers, Galpin et al. (1990), have also experimentally 
investigated the effect of an alternating magnetic field on liquid metals in the low- 
frequency range. In that study, unlike the present work, the fluid motion is influenced 
not only by the mean part of the EM force but also by the alternating part. 

The focus of the present work is on vertical EM casting of aluminium supported by 
a high-frequency magnetic field. At such frequencies, the skin depth for the fields in the 
metal is small. Because the metal is not substantially penetrated by the magnetic field, 
the field is essentially parallel to the surface of the metal. Furthermore, because the 
magnetic field diffuses into the metal to a millimetre or so, and the cross-section and 
depth of liquid metal pool are on the order of 1 m2 and a few centimetres, respectively, 
the extent of the liquid metal both in the horizontal direction and in the depth can be 
considered infinite. 

Under these circumstances, the work by McHale & Melcher (1982), and Garnier & 
Moreau (1983) applies in determining the stability of the EM casting operation. 
Although McHale & Melcher’s analysis considers both a viscous fluid and the 
interfacial perturbation, their attention is on the instability that arises in the bulk of the 
fluid. In fact, in the first set of their results, a flat interface is bounded by rigid 
insulating material. Later, the effect of interfacial perturbation, which is the main 
concern of the present work, is simply added on and a conclusion is drawn that it does 
not significantly alter the results obtained with a flat interface. Thus, the instability 
considered there is purely due to bulk coupled mechanisms. Winstead & Hoburg (1991) 
have extended that study to include the electrothermal effects on the incipience of the 
instability. 

Garnier & Moreau’s (1983) work, on the other hand, deals purely with the 
disturbance on the liquid metal surface. They consider inviscid fluids and, in terms of 
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stability analysis, a system similar to that for EM casting of aluminium is always stable. 
However, the marginal state is determined to be oscillatory. That is, any imposed 
perturbations on the liquid metal surface will neither grow nor damp. Because the 
surface executes an undamped oscillation, from a practical point of view, this situation 
could clearly allow formation of striations on the cast metal ingot. 

The viscosity (neglected in Garnier & Moreau’s work) is likely to damp these 
oscillations of the surface. Therefore, in the present work we have extended their 
analysis by including the viscous effects in order to estimate the damping rates. A low 
damping rate, for all practical purposes, would still permit the possibility of striations 
on the ingot. 

Also, in that analysis Garnier & Moreau ignored the frequency of the normal modes 
of the disturbance (s) in comparison to the applied frequency of the magnetic field (w). 
Although s may be much smaller than w, there is no need to ignore s in writing the 
perturbed magnetic field. We have avoided that approximation and the results are 
shown to substantially change their conclusions. 

2. Linear stability analysis 
Two viscous fluids, identified by subscripts 1 and 2, are separated by an interface 

z = @(r, t) ,  as shown in figure 1, where in general, the vertical location of the interface 
at any position and time is determined by specifying the position vector, Y = i$+y?. 

The initial equilibrium state of the system is defined by a flat interface, z = 0, and the 
fluids are at rest. In general, with the fluid in motion, the magnetic field follows the 
equation 

1 aB 
-V2 B+V x ( V X  B) = -, 
Po g at 

where is the permeability of free space, cr the electrical conductivity of fluid 1, B the 
magnetic flux density and V the fluid velocity. In many applications, such as 
electromagnetic casting of aluminium, the metal conductivity is large and the fluid 
velocities are small; thus the magnetic Reynolds number (based on skin depth 6 and 
the y-component of the perturbed fluid velocity Y or angular frequency of applied 
magnetic field w)  

is small. For example, for values typical in electromagnetic casting of aluminium, CT = 
3.85 x lo6 mho m-l, w = 2n x lo3 rad s-l and Y = 0.10 m s-l, R,( = 0.004) 4 1. In that 
case the convective term in the equation above can be neglected and a uniform flux 
density of angular frequency w, applied in the fluid 2, diffuses into the fluid 1 according 
to the equation and the constraint (Garnier & Moreau 1983), respectively: 

V * B ,  = 0. (2) 

Using the superscript 0 to denote the initial state, the applied magnetic flux density, 

e ( z ,  t )  = B, cos (wt )  2, z > 0 (3) 
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Fluid 2 
conductivity = 0 
viscosity = p2 
density = pz 

Fluid 1 
conductivity = CT 

viscosity = p, /) ,v density = p, 
-Y 

z = q r ,  t )  

FIGURE 1. Coordinate system and relative location of fluids. 

satisfies the following equation and two constraints, respectively : 

V2 B, = 0, 

V - B ,  = 0, 

V x B, = 0, 

and then the solution of the field in z < 0 from (1) is 

q ( z ,  t )  = B, eziscos (wt  + z / 8 )  2, z < 0, (7) 

where 6 = (2/p, ,~7w) ' /~ is the skin depth of penetration of the field in the conducting 
fluid. 

The motion of the fluid is described by the continuity and Navier-Stokes equations. 
In addition to gravity, the conducting fluid 1 also experiences an electromagnetic (EM) 
body force J1 x B,, where, from Ampere's law, current density J1 = ( l /p , )V  x B,. 
Therefore, for fluid 1,  

V . V , = O ,  (8) 

where p denotes density, P pressure and g gravity, and similarly for fluid 2 with J x  B 
set to zero. 

In the case of inviscid fluids, such as those considered by Garnier & Moreau (1983), 
the fluid velocities in the initial equilibrium state are arbitrary in the horizontal 
direction. Because of the requirement of continuity of the velocities at the interface for 
viscous fluids, the velocities are not arbitrary. In the initial state employed here the 
fluids are at rest. Thus, we omit the possibility of Kelvin-Helmholtz instability in the 
present analysis. 

Garnier & Moreau (1983) have shown that fluid 1 experiences only the mean part 
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(time averaged) of the EM forces, for the inertia of the fluid does not permit it to 
oscillate at a high frequency (kHz) of 20. Thus, the time-averaged force, 

is substituted in (8) and then the pressure in the initial state is determined to be 

% 
4 ~ n  

E(Z) = P0-p1gz+-(1 - 

P X Z )  = Po-pzgz (11) 
for P! = P: = Po at z = 0. 

Now a disturbance is imposed on the interface in its initial equilibrium state. This 
disturbance is expanded in its normal modes, and then the stability of the system is 
examined with respect to each of those modes. An arbitrary normal mode of the 
imposed perturbation is written as 7 = eo ei(st+k.r) , where the real vector k = [k,, k,, 01 
and s is complex. 

2.1. Perturbation of the electromagnetic fields 
The perturbation of the magnetic field yields in general 

1 ab 
-V2b+Vx ( v x B ) + V  X ( V X  b) = -. 
0-PO at 

A detailed order-of-magnitude analysis performed by Garnier & Moreau (1983, p. 371) 
demonstrates that the convective terms can again be neglected. Therefore, the 
linearized equations that govern the perturbed fields are directly obtained from (1) and 
(4) 

V2b,  = 0, (12) 

According to the constraints in (2), (5) and (6), up to linear terms the perturbed field 
both in z > 0 and z < 0 are solenoidal, and also the field in z > 0 is curl free. 

At z = 0, from continuity of the magnetic field (Garnier & Moreau 1983), 

(1 4 a-C) 

where d1 = (s + w) t + k .  Y - 7t/4,8, = (s  - w )  t + k - Y + x/4, and eo is the amplitude of the 
interface perturbation. 

The boundary condition (14c) suggests that the solution of the perturbed magnetic 
flux density has form b =Az) eifll+g(z) eiez (Garnier & Moreau 1983). After 
substituting each term of the preceding equation in (12) and (13) and realizing that the 
perturbed fields b, at z = - 00 and b, at z = & 00 diminish to a zero value, up to four 
vector constants, E, F, G and H, the magnetic flux density is determined to be 

b - E eifli+Y+z + F eifl,+Y-r, 
b, = G eifll-kZ + H eiO,-kz 

1 -  

2 

where? 
7; = k2 + ipn a(s + w), 7: = k2 + ip0 n(s - w). ( 1 5 4  b)  

t In the following equations, Garnier & Moreau (1983) neglected s in comparison to w. That 
approximation is avoided here, and later shown to have a significant effect. 
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Then with the help of the boundary conditions in (14) and the constraints, 
perturbed magnetic flux density is completely established : 

Deepak and J .  W. Evans 

the 

2.2. Perturbation of the j u i d  motion 
The equation of motion that describes the perturbation velocities is obtained after 
linearization of (8) and (9) ,  

and after using the fact that neither the density nor the viscosity of the fluids is 
perturbed for an incompressible fluid, 

0 - v ,  = 0, ( 1 7 4  

(17b) 
pl- av1 = -Vpl+pl V 2 v , +  Jf x bl+j l  x q ,  z < 0. 

at 

Similarly, for the non-conducting fluid, 

8 - v ,  = 0, 

2 p2v2v2, z > 0. (18b) p 2 - = - v p  + av, 
at 

The current induced due to the disturbance of the interface is obtained by 
considering the first-order terms in Ampere's law. That is, j ,  = (1 /po) V x b,. Thus, the 
components of the current density, jl, are 

Again, because the fluid experiences only the electromagnetic body forces that are 
time averaged over the oscillating frequency of 2w above and below the interface 
perturbation frequency s, the force considered in (17) is ( J," x b, +jl x q). This 
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averaged force may be written as fl, because the normal modes of the body forces are 
also proportional to the perturbation of the interface. Hence, after time averaging, the 
components off are 

ki+y-k l - i6  
(k: - y+ k ) ea+z + ( k ( y - + k ) - l k  (k: - y- k ) )  ea-'], 

(20 c) 
where a+ = y+ + (1 - i)/6 and a- = y- + (1 + i)/& 

From (17) and (20), it is clear that the normal modes for the perturbed velocities are 
similar to those for the perturbed interface. Thus, in both the fluids, u = [u,v, w] - 
linearized continuity condition is written as 

ei(st+k.r) . u sing this normal mode expansion in (17), with D = a/az, in z < 0, the 

ik, u1 + ik, v1 + Dw, = 0, (21) 

while combining the x- and y-components of the perturbation velocity with (21) gives 
the perturbation pressure : 

ik2pl = spl Dwl+ip1(D2-k2)Dw1+~(k~f). (22) 

(23) 

Further, using this equation to eliminate p1 from the z-component of velocity yields 

(D2-kk2) ~,s+ip1(D2-k2)] w, = ~,~[ik'f,-D(k-f)]. 

Similarly for fluid 2 in z > 0, from (1 8) the relevant equations of motion are 

ik'p, = sp, Dw, + i,u,(D2- k2) Dw,, 

(D2 - k2)  I., s + ip,(D2 - k2)] w, = 0. 

In the following, with the boundary conditions on w specified below, (23) and (25) 
are used to determine the fluid velocities, which in turn are used to obtain the 
perturbation pressures at the interface from (22) and (24). Finally, from the condition 
of discontinuity in pressure across a curved interface, a stability criterion is established. 

The perturbed velocities in both the fluids diminish away from the interface. 
Therefore, 

wl=o,  z = - m ,  (26 a) 
w , = o  z = + m .  (26 b) 

Furthermore, the kinematic boundary condition at the interface demands that a fluid 
particle at the interface remains there during the perturbation. Mathematically, 

is7 = w, = w,, z = 0. (27) 
Also, up to linear terms, the tangential velocities u and v are continuous at the 
interface. Therefore, because the flow is solenoidal, from an equation of type (21), it 
can be deduced that Dw is also continuous. That is, 

Dw, = Dw,, z = 0. (28) 

The dynamic boundary condition can be written by realizing that the normal 
component of the stress experiences a discontinuity across a curved interface, while the 
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tangential component is continuous. The latter requirement up to first order is 
expressed as 

(29) 

The discontinuity in the normal component of the stress across an interface defined by 
z = @ is (Gupta 1993) 

p1(D2 + k2)  w1 = p2(D2 + k2)  w,, z = 0. 

P2 - Pl + 2p, r i .  [ ( r i .  V,) v,] - 2p, r i .  [(ti. V) v,] 
= T[@,,( 1 + 0:) - 2QZ Qy Qsy + QYy( 1 + @3] (1 + @: + @:)-3”, z = @, 

where it is the unit normal vector to the interface pointing into fluid 2. After 
linearization of this equation and using the expressions for initial state pressures in (10) 
and (11): 

where T is the interfacial tension between fluids 1 and 2. 
In order to determine the solution of (23),  the particular solution, yw0(z), is 

expressed in the form w,(z) = Xea+z+ Yea-r, which already satisfies the boundary 
condition in (26), and the constants X and Y are 

(3  1 a) 
Bi k: i(l + i) (2  + s / w )  X=- 

2Po LL1 f33 (4 - k 2 ) ( 4  - 4 3  (Y+ + k)  

and 

Hence, the solution of (23) and (25) that also vanishes at infinity is conveniently written 
as 

wl(z) = 7[Ml ek2+NN, eqlz+ w,(z)], z < 0, 
w2(z) = 7[M2 eckz + N ,  e-*z”], z > 0, 

where 4: = k 2  + ispl/,ul and 4: = k2 + isp,/,u2, such that the real parts of both q1 and q2 
are positive and M and N are constants now to be determined. 

Two of the constants, N ,  and N,,  are eliminated by applying the kinematic boundary 
condition in (27) and then the remaining two constants are determined using (28) and 
(29). Therefore, with the determinants defined as 

(32 a) 

(32b) 

the perturbation velocities are established to be 

z > 0. (33  b) 
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I I 

(above eq. (33)) 

FIGURE 2.  Computational scheme for (34). 

The fluid velocities obtained here are inserted in (22) and (24) to compute the 
perturbation pressure. After some algebra, the difference in the perturbation pressure 
across the interface is thus determined as 

The final equation that establishes the criterion to determine stability or instability is 
obtained by substituting this pressure difference in (30) and eliminating 7 : 

where f is evaluated at z = 0. 
For given values of physical properties and operating conditions, and for specified 

k, this equation is used to compute s. Because s is a complex quantity, (34) is actually 
two equations of real variables and constants, used to estimate both the real and 
imaginary parts of s. The technique used to determine s from (34) is similar to the 
bisection method, which here is applied in two dimensions (variables) : the real part of 
s, Re (s), and the imaginary part of s, Im (s). The objective is the determination of Re (s) 
and Im(s) such that the difference between the left-hand and right-hand sides of the 
imaginary part of (34) (that difference henceforth called G)  is zero, and similarly for 
the real part of (34) (henceforth H ) .  A region of the Re (s), Im (s) plane is divided into 
small rectangles and G and H are evaluated at the corners of each rectangle. A 
rectangle where G changes sign between adjacent corners is traversed by the locus 
G = 0, as is at least one adjacent rectangle. In this way G = 0 is ‘tracked’. His evaluated 
on each corner of a traversed rectangle and tracking halted when a rectangle is 
encountered with a change of sign of H. That rectangle then contains a solution to (34) 
and is subdivided into smaller rectangles. The procedure is repeated until a solution is 
obtained with the necessary precision. As in many numerical techniques, the solution 
may not be unique. However, in the present work the Re@), Im(s) plane has been 
explored over a wide range, much beyond what might be expected for the application 
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under consideration (electromagnetic casting) and only one solution found for positive 
values of Re (3). Figure 2 illustrates the order in which the required auxiliary variables 
are determined to solve (34). 

If Im(s) is negative for a given k ,  the system is unstable, and stable otherwise. 
Furthermore, Im (s) also provides the stated objective of this work, namely the growth 
or damping rate of the disturbance. Re@) gives the angular frequency of the 
oscillations on the interface. 

3. Application in EM casting of aluminium 
In the context of EM casting of aluminium, in the preceding analysis the fluid 2 is 

air on top and fluid 1 is aluminium below. The physical properties for this system are 
listed in table 1. 

In the absence of an EM field, the hydrodynamic system of a heavier fluid below a 
lighter one is unconditionally stable (Rayleigh-Taylor stability), that is perturbations 
will not grow. If the fluids are inviscid, because there is no mechanism for dissipation 
of mechanical energy, a perturbation imposed on the interface executes an undamped 
oscillation; for viscous fluids, however, the oscillations are damped. With an applied 
high-frequency magnetic field, Garnier & Moreau's (1983) analysis for inviscid fluids 
predicts stability, where the marginal state is characterized by undamped oscillations 
of the aluminium/air interface. For a magnetic field of amplitude 0.1 Tesla and 1 kHz 
frequency, the angular frequency, Re (s), predicted from their analysis is plotted as a 
function of dimensionless wavelength in a direction 45" from the X-axis (curve d in 
figure 3). 

The present analysis differs from that of Garnier & Moreau in two respects: s was 
not neglected compared to w (equation (15)) and viscosity was included. The addition 
of viscosity to Garnier & Moreau's analysis can be achieved within the scope of the 
present analysis merely by neglecting s in (15). The frequencies of the interface 
oscillations (curve a,  figure 3) are identical to those of Garnier & Moreau. However, 
an imposed disturbance is damped as shown by the positive values of Im(s) (curve a, 
figure 4). Although a perturbation of short wavelength is rapidly damped when viscous 
effects are included, a perturbation of wavelength (27r/k) greater than, say, 108 persists 
for a long time. Consequently, this extension of the analysis of Garnier & Moreau 
suggests that viscosity may be an insufficient mechanism for avoiding oscillations of the 
melt surface in practical casters. 

The algebra of the preceding section is sufficiently complicated that it is not obvious 
that the results reduce to those of Garnier & Moreau in the limit of zero viscosity (and 
negligible s). This was demonstrated numerically by repeating the calculations 
pertaining to figure 4 but with viscosities reduced to pl = 1.2 x kg ms-l (four 
orders of magnitude less than that of aluminium) and pz = 30.8 x lop9 kg ms-l (three 
orders of magnitude less than that of air); s was neglected compared to w.  The 
computed results appear in table 2 and demonstrate the approach to Garnier & 
Moreau's result (Im (s) zero) under these circumstances. 

The effect of neglecting s in (15) is seen when s is included in the calculations, while 
the viscosity is ignored, and computed results are compared to those from Garnier & 
Moreau (1983). The Re (s) (curve 6, figure 3) is identical to that of Garnier & Moreau 
but Im(s) is now negative (curve b, figure 4), implying instability. Therefore, the 
apparent conservation of mechanical energy implied by an undamped motion of the 
interface in Garnier & Moreau (1983) seems to arise due to neglect of s in calculations 
from the perturbed magnetic flux density. If s is included, the stable oscillations of 
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0 20 40 60 80 100 
Dimensionless wavelength, 2 d k ,  6 = 2nIky 6 

FIGURE 3 .  Re(s) us. wavelength: (a) present analysis with s / w  neglected; (b) without viscosity, but 
s / w  not neglected; (c)  present analysis with s /w not neglected; (d )  analysis of Garnier & Moreau. 
B, = 0.1 T , f =  1 kHz. 

Conductivity of aluminium, (mho m-') 3.85 x lo6 
Density of aluminium, p1 (kg m-3) 
Density of air, p2 (kg m-3) 

Viscosity of air, ,uz (kg ms-') 
Aluminium/air interfacial tension (N m-') 

2300 
0.5 

30.8 x 
0.868 

TABLE 1. Physical properties of aluminium and air 

Viscosity of aluminium, ,ul (kg ms-') 1.2 x 10-3 

Garnier & Moreau's analysis are augmented for most wavelengths. The maximum 
growth rate for the conditions of the calculations occurs at  a wavelength of 
approximately 106. As in the analysis of the previous paragraph, long wavelengths 
should be little affected by the magnetic field. 

Use of the full analysis of the present work (that is, s is included in (15) and fluids 
are viscous) results in curve (c)  of figures 3 and 4. Again the frequencies of the interface 
oscillations are the same but differences in the stability (imaginary part of s) are evident 
in figure 4. The destabilizing effect of an alternating magnetic field is shown by the 
present analysis. This is in contrast to the stabilizing effect of a steady magnetic field 
on Rayleigh-Taylor instability (Chandrasekhar 198 1). 

Table 3 and the following paragraph are an attempted rationalization of the 
difference between the Garnier/Moreau analysis and the present investigation. 

The perturbed body forces are seen to be different in the Garnier/Moreau analysis 
and ours. Referring to (1 5 )  and (20), y+ and y- and a, and a- are pairs of complex 
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Dimensionless wavelength, 2 d k ,  6 = 27c/ky 6 

FIGURE 4. Im (s) us. wavenumber: (a) present analysis with s / w  neglected; (b)  without viscosity, but 
s /w not neglected; (c)  present analysis with s /w not neglected; ( d )  analysis of Garnier & Moreau. 
B, = 1 T, f = 1 kHz. 

Dimensionless 
wavelength 3 5 7 10 15 35 

Im (4 0.0004 0.0002 0.0001 0.0001 < 0.0001 < 0.0001 

TABLE 2. Computed Im(s) for low viscosities (,u, = 1.2 x lo-' kg ms-l and ,uz = 30.8 x lo-' kg ms-') 
and s neglected, demonstrating convergence of results to those of Garnier & Moreau 

Dimensionless Perturbed 
wavelength forces Garnier & Moreau Present work 

3 f ,  0 + i4249 1067 841 56 + i42490772 
O+i126659952 0 +i126659952 
161 324992 + i0 161326976+i866779 

f ,  
f, 

f ,  
f, 

ik%-D(k.f) 0-i0.256 x -0.568 x 10"-i0.256 x 10'" 
7 f ,  0 + i37549444 92979 + i37549508 

0 + i54282836 
10 1608672 + i0 

0 + i54282836 
10 1612936 + i99 1672 

ik2f,-D(k-f) 0-i0.7655 x 10l2 -0.108 x lO"-iO.7655 x 10" 

TABLE 3. Perturbed forces calculated from the analysis of Garnier & Moreau [l] and the present 
investigation. w = 1 kHz, B, = 0.1 T (conditions as in figure 4). 
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1 i, 

\ 

0 10 20 30 40 50 60 
Wavelength 

- 0 . 2 5 ,  , I , I , , , I , I , I , I 
0 80 160 240 

Wavelength, 2 d k ,  = 2dk ,  (mm) 

FIGURE 5.  Effect of magnetic field frequency on growth rates of instability for 
perturbations 45" to the applied field. B, = 0.1 T. 

conjugates in Garnier/Moreau ; consequently the coefficients of the exponents in each 
of equations (16a-c) are also complex conjugates. As a result, components o f f i n  
Garnier/Moreau are either purely real or purely imaginary, as exemplified in table 3. 
In the present analysis, however, y+ and y- are not complex conjugates (nor are a+ and 
K ) .  Consequently the present analysis yields practically the same values for Im (f,), 
Im(f,) and Re(f,) but now f, and f, have additionally a real part whilef, has an 
imaginary part. These additional parts lead to the growth or damping of the 
perturbations reported in the present work. Also appearing in table 3 is the 'driving 
force' for interface movement on the right-hand size of (23) and here again a significant 
difference is seen between the Garnier/Moreau analysis and that of the present paper 
in that the latter has a real part. However, inclusion of s in (15) has a negligible effect 
on Im (f,), Im (f,) and Re (f,) (see table 3) and the angular frequency of the oscillations 
is therefore essentially identical in the present analysis and in Garnier/Moreau. 

The following results are also for an applied field of B, = 0.1 T and wavenumbers 
inclined 45" on the X-axis, while the frequency of the applied field is varied. The results 
in this case are presented in figures 5 and 6 with wavenumbers not normalized by the 
skin depth, as the skin depth also depends on the frequency. At short wavelengths, the 
magnetic field of a higher frequency is more destabilizing, whereas beyond a 
wavelength of approximately 40 mm, a low-frequency magnetic field causes a greater 
instability, as shown in figure 5.  The frequency range of the applied field of interest in 
EM casting of aluminium (2-5 kHz) does not have a significant effect on the oscillating 
frequency of the perturbed interface, as indicated by curves in figure 6 that correspond 
to frequencies in figure 5. 

The strength of the magnetic field density required in EM casting of aluminium is on 
the order of 0.1 T. Figure 7 illustrates the effect of a magnetic field on the stability of 
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FIGURE 8. Effect of magnetic field strength on instability, Re(s) us. wavelength. f= 3 kHz. 

the system under investigation. Increased strength of the magnetic field is shown to 
cause a greater instability; only the short-wavelength perturbations are stable in the 
range of field strength examined here. (The wavelengths longer than 458 behave the 
same way as in figure 4 and are included neither in figure 7 nor in the ones later.) Also, 
in this case, from figure 8, it is clear that a magnetic field of a greater strength leads to 
more rapid oscillations of the interface. 

The effect of magnetic field strength is also examined for the wavenumbers in the 
direction of the magnetic field, the X-direction. As demonstrated in figure 9, when no 
magnetic field is applied to the system, it is always stable, which is a well-known result 
from the Rayleigh-Taylor analysis. Up to a field strength of approximately 0.025 T, 
the interface is stable. However, an application of an alternating magnetic field of 
increasing strength again causes a greater instability. In comparison to results in figure 
7, for the same B, and similar wavenumbers, the growth rates, Im (s), are much higher 
for wavenumbers in the X-direction than those inclined 45" to it. The frequency of 
interface oscillation in figure 10, however, is similar to that in figure 8. 

The disturbance with wavenumbers perpendicular to the applied magnetic field, 
that is the ones in the Y-direction, are unaffected by the field and hence are always 
stable. This fact is clear from (34) in which, for k, = 0, the two terms B:/2,u0S and 
-i (k-f)/k2 cancel each other and wo is zero. Therefore, (34) becomes independent 
of the magnetic field, just as it would be if no field were applied. The results in that 
case exactly corresponds to those in figures 9 and 10 for B, = 0. Thus, the system is 
more stable to the wavenumbers away from the direction of the applied alternating 
field. 

The value of the interfacial tension used in the calculations is for an aluminium/air 
interface. But it is known that the aluminium surface gets oxidized during the casting 
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T = 2.0 N m-l T = 0.868 N m-l T=ONm- '  

27c 2x Re (s) (rad s-l) Im (3 )  (s-l) Re (s) (rad s-l) Im(s) (s-') Re (s) (rad s-l) Im (s) (s-l) 

k,S k,S 
- 

2 1432.4 0.24 17 1276.7 0.2317 1143.1 0.2212 
4 815.66 - 1.0699 782.7 - 1.0727 756.4 - 1.0751 

15 304.7 -0.886 303.1 -0.8861 301.8 -0.8862 

TABLE 4. Effect of interfacial tension. B, = 0.3 T, f = 3 kHz 

operation and consequently there is uncertainty in the value of the interfacial tension. 
However, it is shown below that the interfacial tension has an insignificant effect on the 
instability. 

At large wavelengths, the interfacial tension is not expected to have a notable effect. 
But even for the short wavelengths, the growth rate of the instability and the frequency 
of the interface oscillations are not significantly different when the stabilizing effect of 
the interfacial tension is ignored (table 4). 

Experimental evidence from the work of Hull & Rote (1990) suggests that an 
alternating magnetic field delays the onset of Kelvin-Helmholtz instability on a 
horizontal surface of liquid metal. These workers report that, for field strengths of 
to lo-' T, the system in the presence of the field is able to tolerate larger gas velocities 
over the surface before instability occurs. In the present work we are not concerned 
with Kelvin-Helmholtz instability, and the critical field strength where instability 
occurs is higher (approximately 0.05 T) than those examined by Hull & Rote. 

4. Conclusions 
Not ignoring s in comparison to w while determining the perturbed field radically 

alters the conclusions in Garnier & Moreau (1983); a stable system in that analysis is 
actually shown to be unstable. Because a similar hydrodynamic problem without the 
magnetic field constitutes a stable system, the presence of an alternating magnetic field 
is identified as the cause of instability. 

Although viscosity of the fluids reduces the growth rates of the instability, the impact 
of viscosity is small under the conditions pertaining to EM casting. The disturbances 
of a short-to-intermediate wavelength grow most rapidly, and hence are likely to cause 
fluctuations on the interface. Furthermore, the long-wavelength perturbations ( > 406), 
with or without viscous effect, have a small growth rate. Hence, for all practical 
purpose, oscillations of corresponding frequency may be assumed to exist over the time 
period during which the metal solidifies. It is thus concluded that the striations on the 
cast ingot may be result of this instability and oscillations on the liquid metal surface. 

The frequency of oscillations at the interface has been observed to be on the order 
of 10 rad s-l (McHale & Melcher 1982). This frequency corresponds to the 
perturbations of wavelength more than 306, where a low frequency of the applied field 
causes a greater instability. Thus, EM casting of aluminium at a maximum admissible 
frequency may be better if electromagnetically induced surface oscillations are to be 
avoided. 

As the origin of the instability is in the application of an alternating magnetic field, 
the casting operation should be carried out at a low strength of the field. That implies 
that the depth of liquid metal head supported by this field should be as small as 
possible. 



150 Deepak and J .  W. Evans 

The perturbations along the direction of the magnetic field are the most unstable, 
while those perpendicular to it are always stable. That demands additional care in 
avoiding disturbances parallel to the applied field. 

The stability analysis presented in this paper cannot be regarded as a complete one 
for EM casting. The horizontal striations observed on the cast surface of an aluminium 
ingot are usually separated by a few millimetres and the casting speed is approximately 
1 mm s-'. That suggests that the striations would be caused by interface oscillations of 
frequency on the order of 1 Hz or less. However, in the results presented here, most 
frequencies are much higher. One possible explanation is that a broad range of 
frequencies is seen to be unstable and there may be beat frequencies between 
instabilities of closely spaced frequency that result in the observed surface 
imperfections. 
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